Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Water Res ; 258: 121705, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776744

RESUMO

High concentrations of dissolved silica in saline industrial wastewaters and brines cause silica scale formation, significantly hampering the efficacy of diverse engineered systems. Applying functional polymers as scale inhibitors in process feedwater is a common strategy to mitigate silica scaling. However, feedwater characteristics often vary widely, depending on the specific processes, making the inhibition of silica scaling challenging and complex. In this study, we systematically investigate the role of ionic composition, specifically ionic strength and divalent ions, and solution temperature, in inhibiting silica scaling using molecularly designed amine/amide polymers. The inhibitor demonstrates effective stabilization of silicic acid, with inhibition efficiency of 74 and 55 % in the absence and presence of 20,000 ppm NaCl, respectively. However, further increasing the ionic strength of oversaturated silicic acid solutions significantly diminishes inhibition performance, rendering it ineffective at 180,000 ppm NaCl. Divalent inorganic cations exhibit a stronger impact on reducing inhibition efficiency compared to sodium ions. Molecular dynamics simulations reveal a competition mechanism between anionic silicic acid reactants (i.e., H3SiO4-) and chlorides for binding to ammonium groups within the polymeric inhibitor. Additionally, cations form clusters with H3SiO4- ions, hindering their stabilization with polymeric inhibitor. Notably, at elevated temperatures, the inhibitor achieves near-perfect inhibition for 500 ppm silicic acid solutions. This comprehensive assessment provides important insights into the effectiveness of silica scaling inhibitors under solution conditions relevant to real-world applications, addressing the challenges posed by varying solution parameters in diverse industrial processes.

2.
Water Res ; 255: 121476, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503181

RESUMO

Industrial mariculture, a vital means of providing high quality protein to humans, is a potential source of microplastics (MPs) which have recently received increasing attention. This study investigated the occurrence and distribution of microplastics in feed, source water and recirculating aquaculture system (RAS) with long & short operating times as well as in fish from typical industrial mariculture farms in China. Results showed that microplastics occurred in all samples with the average concentration of 3.53 ± 1.39 particles/g, 0.70 ± 0.17 particles/L, 1.53 ± 0.21 particles/L and 2.21 ± 0.62 particles/individual for feed, source water, RAS and fish, respectively. Microplastics were mainly fiber in shape, blue in color and 20-500 µm in size. Compared with short operated RAS, long operating time led to higher microplastic concentration in RAS, especially that of microplastic in 20-500 µm, granular and blue. Regardless of short or long operating time, microplastics in RAS mainly gathered in culture tank, tank before microfilter and fixed-bed biological filter, and the microfilter removed efficiently the microplastic with the shape of film, granule, fragment as well as those with size > 1000 µm. As for the polymer types, polyamide (PA, 71.9 %) and polyethylene terephthalate (PET, 65.7 %) dominated in feed and source water, respectively, which may be the reason for the high proportion of PA (38.8 % and 26.4 %) and PET (31.8 % and 30.2 %) in RAS and fish. In addition, polypropylene (PP) was also detected in RAS (18.7 %) and fish (22.6 %), indicating that other plastic facilities such as PP brush carrier also made a contribution. Positive matrix factorization (PMF) model revealed three sources of MP in RAS, namely plastic facilities, industrial sewage and plastic packaging products. Our results provided a theoretical basis for the management of MP in RAS.

3.
Environ Sci Pollut Res Int ; 31(6): 9831-9843, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198086

RESUMO

As an important input of environmental micropollutants into aquaculture environment, feed is now considered to be a critical factor in shaping gastrointestinal evacuation characteristics of animals. We analyzed the gastrointestinal evacuation characteristics and gut bacteria of Apostichopus japonicus within 30 h after feeding in recirculating aquaculture system (RAS) and explored the evacuation mechanism interacting by bacteria. The Gauss model was the most precise gastrointestinal evacuation curve, and 80% of gastrointestinal evacuation time was 27.81 h after feeding. Linear discriminant analysis effect size analysis revealed that gut microbial abundance associated significantly with time (P < 0.05), and 42 biomarkers that could predict gastrointestinal evacuation were totally detected, such as Lutibacter and Vibrio. Biomarkers at 25 h after feeding were related to harmful bacteria. A dynamic response between gastrointestinal content ratio and gut microbial abundance was detected. Taken together, we could discharge sewage about 25 h after feeding and carry out the next round of feeding activities.


Assuntos
Microbioma Gastrointestinal , Stichopus , Vibrio , Animais , Trato Gastrointestinal , Vibrio/fisiologia , Biomarcadores
4.
Environ Sci Technol ; 58(1): 871-882, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150403

RESUMO

Silica polymerization, which involves the condensation reaction of silicic acid, is a fundamental process with wide-ranging implications in biological systems, material synthesis, and scale formation. The formation of a silica-based scale poses significant technological challenges to energy-efficient operations in various industrial processes, including heat exchangers and water treatment membranes. Despite the common strategy of applying functional polymers for inhibiting silica polymerization, the underlying mechanisms of inhibition remain elusive. In this study, we synthesized a series of nitrogen-containing polymers as silica inhibitors and elucidated the role of their molecular structures in stabilizing silicic acids. Polymers with both charged amine and uncharged amide groups in their backbones exhibit superior inhibition performance, retaining up to 430 ppm of reactive silica intact for 8 h under neutral pH conditions. In contrast, monomers of these amine/amide-containing polymers as well as polymers containing only amine or amide functionalities present insignificant inhibition. Molecular dynamics simulations reveal strong binding between the deprotonated silicic acid and a polymer when the amine groups in the polymer are protonated. Notably, an extended chain conformation of the polymer is crucial to prevent proximity between the interacting monomeric silica species, thereby facilitating effective silica inhibition. Furthermore, the hydrophobic nature of alkyl segments in polymer chains disrupts the hydration shell around the polymer, resulting in enhanced binding with ionized silicic acid precursors compared to monomers. Our findings provide novel mechanistic insights into the stabilization of silicic acids with functional polymers, highlighting the molecular design principles of effective inhibitors for silica polymerization.


Assuntos
Ácido Silícico , Dióxido de Silício , Dióxido de Silício/química , Ácido Silícico/química , Polímeros/química , Amidas , Aminas
5.
Bioresour Technol ; 394: 130240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160849

RESUMO

Nitrate accumulation is an important issue that affects animal health and causes eutrophication. This study combined biodegradable polymers with degrading bacteria to lead to high denitrification efficiency. The results showed polycaprolactone had the highest degradation and carbon release rate (0.214 mg/g∙d) and nitrogen removal was greatest when the Bacillus pumilus and Halomonas venusta ratio was 1:2. When the hydraulic retention time was extended to 12 h, the nitrate removal rate for H. venusta with B. pumilus and polycaprolactone increased by 48 %. Furthermore, the group with B. pumilus contained more Proteobacteria (77.34 %) and denitrifying functional enzymes than the group without B. pumilus. These findings indicated B.pumilus can enhance the degradation of biodegradable polymers especially polycaprolactone to improve the denitrification of the aerobic denitrification bacteria H.venusta when treating maricultural wastewater.


Assuntos
Bacillus pumilus , Desnitrificação , Bacillus pumilus/metabolismo , Nitratos , Polímeros , Reatores Biológicos/microbiologia , Carbono/metabolismo , Nitrogênio
6.
ACS Appl Mater Interfaces ; 15(15): 19634-19645, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-36944180

RESUMO

As fossil fuels remain a major source of energy throughout the world, developing efficient negative emission technologies, such as direct air capture (DAC), which remove carbon dioxide (CO2) from the air, becomes critical for mitigating climate change. Although all DAC processes involve CO2 transport from air into a sorbent/solvent, through an air-solid or air-liquid interface, the fundamental roles the interfaces play in DAC remain poorly understood. Herein, we study the interfacial behavior of amino acid (AA) solvents used in DAC through a combination of vibrational sum frequency generation spectroscopy and molecular dynamics simulations. This study revealed that the absorption of atmospheric CO2 has antagonistic effects on subsequent capture events that are driven by changes in bulk pH and specific ion effects that feedback on surface organization and interactions. Among the three AAs (leucine, valine, and phenylalanine) studied, we identify and separate behaviors from CO2 loading, chemical changes, variations in pH, and specific ion effects that tune structural and chemical degrees of freedom at the air-aqueous interface. The fundamental mechanistic findings described here are anticipated to enable new approaches to DAC based on exploiting interfaces as a tool to address climate change.

7.
J Environ Manage ; 330: 117100, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608606

RESUMO

With the aggravation of environmental pollution caused by traditional culture of Apostichopus japonicus, the concept of A. japonicus recirculating aquaculture system (RAS) came into being. To plan the sewage discharge time reasonably, we explored the temporal variation of water quality, biofilter microbe and fecal metabolome in RAS and relevant mechanism. The results showed that monitored water quality in RAS were within the safe living range of A. japonicus. Proteobacteria and Desulfobacterota were dominant bacteria in biofilter. The RDA results and correlation heatmap showed that NH4-N and NO2-N significantly affected the microbial community composition. The expression pattern of fecal metabolites changed with the passage of time after feeding. And ROC curve analysis and VIP bar chart showed that there were inter group biomarkers with predictive performance, which could help to remind timely sewage discharge. Topological analysis of KEGG pathway enrichment showed that metabolic pathways such as alanine, aspartate and glutamate metabolism changed significantly after feeding (P < 0.01). Additionally, the correlation analysis results showed that biofilter microbe and fecal metabolites were related to water quality (P < 0.05). Combined with the above research results, this study concluded that the RAS could discharge sewage 25-30 h after feeding. These findings were of direct significance to the management of RAS environment and the protection of A. japonicus healthy growth.


Assuntos
Microbiota , Stichopus , Animais , Esgotos , Qualidade da Água , Aquicultura/métodos , Metaboloma
8.
Mar Environ Res ; 184: 105856, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592545

RESUMO

Coral reefs are one of the most diverse, productive ecosystems in the world, and light plays crucial role in its survival. Notably, the effects of light conditions on soft coral and its adaptive mechanism were unclear. Thus, the present study aimed to investigate and evaluate the effects of different light intensities (30, 80 and 130 µmol m-2 s-1) and photoperiods (18D:6L, 12D:12L and 6D:18L) on cultivation of soft coral Sarcophyton trocheliophorum. During two 50-day of the experiments, we monitored the zooxanthellae density, Chl a content, enzyme activities (SOD, CAT and GST) and microbial diversity of S. trocheliophorum. Our study's outcomes found that, at the end of the experiment, the 80 µmol m-2 s-1 light intensity group and 12D:12L photoperiod group both possessed the highest zooxanthellae density (2.54 × 108 ± 0.14 × 108 cells g-1 DW and 2.40 × 108 ± 0.07 × 108 cells g-1 DW, respectively), Chl a content (295.01 ± 14.13 µg g-1 DW and 287.78 ± 16.13 µg g-1 DW, respectively) and microbial diversity and relatively stable enzyme activities level. Besides, we speculated that the reason for the decline of zooxanthellae density, Chl a content and microbial diversity under other light conditions might be that it induced light stress and caused oxidative damage. The main bacterial composition of S. trocheliophorum in different light conditions was similar at the phylum level, showing the stability of microbial community structure. Proteobacteria, Actinobacteria and Firmicutes were dominant under all light conditions, so we hypothesized that these bacteria phylum play a crucial role in coral growth and survival. In conclusion, compared with the other treatments, 80 µmol m-2 s-1 light intensity and 12D:12L photoperiod were more beneficial to the growth performance of S. trocheliophorum and could be recommended for its cultivation condition. Our study could provide helpful information for sustainable management plans for the cultivation and conservation of soft corals, which was especially important to the protection and restoration of degraded coral reefs.


Assuntos
Antozoários , Animais , Antozoários/química , Fotoperíodo , Ecossistema , Recifes de Corais , Bactérias
9.
ACS Cent Sci ; 8(6): 729-740, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35756376

RESUMO

Iron (Fe) metal batteries, such as Fe-ion batteries and all Fe flow batteries, are promising energy storage technologies for grid applications due to the extremely low cost of Fe and Fe salts. Nonetheless, the cycle life of Fe metal batteries is poor primarily due to the low Coulombic efficiency of the Fe deposition/stripping reaction. Current aqueous electrolytes based on Fe chloride or sulfate salts can only operate at a Coulombic efficiency of <91% under mild operation conditions (<5 mA/cm2), largely due to undesired hydrogen evolution reaction (HER). This work reports a series of novel Fe electrolytes, Fe electrolytes reinforced with Mg ions (FERMI) and Ca ions (FERCI), which have remarkably better Coulombic efficiency, higher conductivity, and faster deposition/stripping kinetics. By the addition of 4.5 M MgCl2 or CaCl2 into the baseline FeCl2 electrolyte, the Fe deposition/stripping efficiency can be significantly improved to 99.1%, which greatly boosts the cycling performance of Fe metal batteries in both half-cells and full-cells. Mechanistic studies reveal that the remarkably improved efficiency is due to a reduced amount of "dead Fe" as well as suppressed HER. By the combination of experiments and molecular dynamics and density functional theory computation, the electrolyte structure is revealed, and the mechanism for enhanced water reduction resistance is elucidated. These novel electrolytes not only enable a highly reversible Fe metal anode for low-cost energy storage technologies but also have the potential to address the HER side reaction problem in other electrochemical technologies based on aqueous electrolytes, such as CO2 reduction, NH3 synthesis, etc.

10.
J Hazard Mater ; 428: 128137, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016121

RESUMO

2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, a.k.a. "GenX", is a surfactant introduced as a safer alternative to replace perfluorooctanoate (PFOA) in the manufacturing of fluorinated polymers, however, GenX is shown to cause adverse health effects similar to, or even worse than, those of the legacy PFOA. With an overarching goal to understand the behavior of GenX molecules in aqueous media, we report here on GenX micelle formation and structure in aqueous solutions, on the basis of results obtained from a combination of experimental techniques such as surface tension, fluorescence, viscosity, and small-angle neutron scattering (SANS), and molecular dynamics (MD) simulations. To our best knowledge, this is the first report on GenX micelles. The critical micelle concentration (CMC) of GenX ammonium salt in water is 175 mM. GenX forms small micelles with association number 6-8 and 10 Å radius. GenX molecules prefer to align along the micelle surface, and the ether oxygen of GenX has very little interaction with and exposure to water. Information on the surfactant and interfacial properties of GenX is crucial, since such properties are manifestations of interactions between GenX molecules and between GenX and water molecules and, in turn, the amphiphilic character of GenX dictates its fate and transport in the aqueous environment, its interactions with various biomolecules, and its binding to adsorbent materials.


Assuntos
Poluentes Químicos da Água , Água , Micelas , Tensão Superficial , Tensoativos , Poluentes Químicos da Água/análise
11.
Langmuir ; 37(17): 5339-5347, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33885307

RESUMO

The self-assembly of surfactants in aqueous solution can be modulated by the presence of additives including urea, which is a well-known protein denaturant and also present in physiological fluids and agricultural runoff. This study addresses the effects of urea on the structure of micelles formed in water by the fluorinated surfactant perfluoro-n-octanoic acid ammonium salt (PFOA). Analysis of small-angle neutron scattering (SANS) experiments and atomistic molecular dynamics (MD) simulations provide consensus strong evidence for the direct mechanism of urea action on micellization: urea helps solvate the hydrophobic micelle core by localizing at the surface of the core in the place of some water molecules. Consequently, urea decreases electrostatic interactions at the micelle shell, changes the micelle shape from prolate ellipsoid to sphere, and decreases the number of surfactant molecules associating in a micelle. These findings inform the interactions and behavior of surface active per- and polyfluoroalkyl substances (PFAS) released in the aqueous environment and biota.

12.
Phys Chem Chem Phys ; 23(16): 10029-10039, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870993

RESUMO

Surface active per- and polyfluoroalkyl substances (PFAS) released in the environment generate great concern in the US and worldwide. The sequestration of PFAS amphiphiles from aqueous media can be limited by their strong tendency to form micelles that plug the pores in the adsorbent material, rendering most of the active surface inaccessible. A joint experimental and simulation approach has been used to investigate the structure of perfluorooctanoate ammonium (PFOA) micelles in aqueous solutions, focusing on the understanding of ethanol addition on PFOA micelle formation and structure. Structurally compact and slightly ellipsoidal in shape, PFOA micelles in pure water become more diffuse with increasing ethanol content, and break into smaller PFOA clusters in aqueous solutions with high ethanol concentration. A transition from a co-surfactant to a co-solvent behavior with the increase of ethanol concentration has been observed by both experiments and simulations, while the latter also provide insight on how to achieve co-solvent conditions with other additives. An improved understanding of how to modulate PFAS surfactant self-assembly in water can inform the fate and transport of PFAS in the environment and the PFAS sequestration from aqueous media.

13.
iScience ; 23(8): 101417, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32798969

RESUMO

Single-ion conducting polymer electrolytes exhibit great potential for next-generation high-energy-density Li metal batteries, although the lack of sufficient molecular-scale insights into lithium transport mechanisms and reliable understanding of key correlations often limit the scope of modification and design of new materials. Moreover, the sensitivity to small variations of polymer chemical structures (e.g., selection of specific linkages or chemical groups) is often overlooked as potential design parameter. In this study, combined molecular dynamics simulations and experimental investigations reveal molecular-scale correlations among variations in polymer structures and Li+ transport capabilities. Based on polyamide-based single-ion conducting quasi-solid polymer electrolytes, it is demonstrated that small modifications of the polymer backbone significantly enhance the Li+ transport while governing the resulting membrane morphology. Based on the obtained insights, tailored materials with significantly improved ionic conductivity and excellent electrochemical performance are achieved and their applicability in LFP||Li and NMC||Li cells is successfully demonstrated.

14.
Proc Natl Acad Sci U S A ; 117(25): 14021-14031, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522878

RESUMO

We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable polarization locally parallel to the director. This polarization density saturates at a low temperature value of ∼6 µC/cm2, the largest ever measured for a fluid or glassy material. This polarization is comparable to that of solid state ferroelectrics and is close to the average value obtained by assuming perfect, polar alignment of molecular dipoles in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultralow applied field (E ∼ 1 V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean field-like and weakly first order and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative, new nematic physics, chemistry, and applications based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction.

15.
Phys Chem Chem Phys ; 20(46): 29174-29183, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30426990

RESUMO

An experimental analysis based on very-low-frequency (VLF) impedance spectra and the Onsager reciprocal relations is combined with advanced analysis of dynamic correlations in atomistic molecular simulations in order to investigate Li+ transport in solvate ionic liquids (SILs). SILs comprised of an equimolar mixture of a lithium salt with glyme molecules are considered as a promising class of highly concentrated electrolytes for future Li-ion batteries. Both simulations and experiments on a prototypical Li-bis(trifluoromethanesulfonyl)imide (TFSI) salt/tetraglyme mixture show that while the ionic conductivity and the Li+ transport number are quite high, the Li+ transference number under 'anion-blocking conditions' is extremely low, making these electrolytes rather inefficient for battery applications. The contribution of cation-anion correlation to the total ionic conductivity has been extracted from both studies, revealing a highly positive contribution due to strongly anti-correlated cation-anion motions. Such cation-anion anti-correlations have also been found in standard ionic liquids and are a consequence of the constraint of momentum conservation. The molecular origin of low Li+ transference number and the influence of anti-correlated motions on Li+ transport efficiency have been investigated as a function of solvent composition. We demonstrate that Li+ transference number can be increased either by reducing the residence time between Li+ and solvent molecules or by adding excessive solvent molecules that are not complexing with Li+.

16.
J Phys Chem B ; 122(43): 9994-10004, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299097

RESUMO

Molecular dynamics simulations using fully atomistic polarizable force field have been performed on solvate ionic liquids (SILs), comprised of tetraglyme (G4) solvent molecules, Li+ cations, and bis(trifluoromethane) sulfonimide (TFSI) anions, [Li(G4)][TFSI]. The SILs with equimolar salt:G4 composition were investigated in the 303-373 K temperature range, whereas several systems with lower salt concentrations were investigated at 373 K. The simulations using polarizable force field demonstrate very good consistency of structural and dynamic properties with experimental data. The ability to accurately sample the ion transport mechanisms is particularly encouraging, taking into account that previous simulations employing nonpolarizable models had challenges in sampling dynamics in these systems. Here, we correlate Li+ ion local environment and glyme conformations with dynamic characteristics, such as residence time of species around Li+, self-diffusion coefficients, transference number, and conductivity. The analysis of contributions to Li+ mobility due to changing its local environment (i.e., moving from one glyme/anion to another) and from translational motion of Li+ with its' coordination environment showed significant dominance of the latter. The contributions of cross-ion dynamic correlations to the total conductivity have been quantified, showing strongly positive contribution from the cation-anion anticorrelation. Despite the high degree of Li-TFSI dissociation and positive contribution of the cation-anion anticorrelated motion to conductivity, the Li+ transference numbers for equimolar SILs are very low under the anion blocking conditions.

17.
J Chem Phys ; 148(19): 193833, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307244

RESUMO

Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.

18.
Phys Chem Chem Phys ; 20(29): 19350-19362, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29993087

RESUMO

Extensive atomistic molecular dynamics (MD) simulations employing a polarizable force field have been conducted to study hydrated anion exchange membranes comprised of a poly(p-phenylene oxide) (PPO) homopolymer functionalized with quaternary ammonium cationic side groups and hydroxide anions. Representative membranes with different cationic structures have been investigated to study correlations between polymer architecture, morphology and transport properties of hydrated membranes. Specifically, hydrated polymers with five different quaternary ammonium cationic groups (R1: -CH3, R2: -C2H5, R3: -C3H7, R4: -C6H13 and R5: -C4H8OCH3) and degree of functionalization of 50% were investigated at three hydration levels (λ = Nwater/Ncation = 5, 10 and 17). Effects of the polymer structure on the distribution of water-rich domains and dynamic relaxations were systematically investigated to uncover the complex interplay between the degree of hydrophobicity/hydrophilicity of the cationic groups, morphology, connectivity of water domains, and the hydroxide transport mechanisms. Structural and dynamical analysis indicates that the bottlenecks, formed between the water-rich domains, create a substantial free energy barrier for hydroxide transport associated with the partial loss of anion hydration structure. The energy penalty associated with the loss of the hydration structure hinders the vehicular transport of the hydroxide anion. The optimal structure of functionalized homopolymer chains should be sufficiently hydrophobic to create nanophase segregation and form an interconnected network of water channels with a minimal amount of narrow bottlenecks that inhibit the vehicular motion of hydrated anions. We demonstrate that utilization of asymmetrically modified cationic groups is a promising route to achieve the desired water channel morphology at low hydration levels.

19.
J Phys Chem Lett ; 9(4): 825-829, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29390610

RESUMO

Combined reactive and nonreactive polarizable molecular dynamics simulations were used to probe the transport mechanisms of hydroxide in hydrated anion-exchange membranes (AEMs) composed of poly(p-phenylene oxide) functionalized with the quaternary ammonium cationic groups. The direct mapping of membrane morphologies between two models allowed us to investigate the contributions of vehicular and Grotthuss mechanisms in hydroxide motion and correlate these mechanisms with the details of local structure. In AEMs with nonblocky polymer structure, where anion transport occurs through narrow (subnanometer size) percolating water channels, simulations indicate the importance of the Grotthuss mechanism. In nonreactive simulations, in order to diffuse through bottlenecks in the water channels, the hydroxide anion has to lose part of its hydration structure, therefore creating a large kinetic barrier for such events. However, when the Grotthuss mechanism is involved, the hydroxide transport through these bottlenecks can easily occur without loss of anion hydration structure and with a much lower barrier.

20.
AMB Express ; 8(1): 17, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29429071

RESUMO

While biofilters are widely used to metabolize ammonia and other wastes in marine recirculating aquaculture systems, the ammonia-oxidizing bacterial and archaeal communities have not been characterized across a diversity of production systems. Using a metagenomics approach, we characterized the ammonia-oxidizing microbiological community of biofilters in a commercial recirculating marine aquaculture system producing hybrid grouper (Epinephelus lanceolatus × E. fuscoguttatus). Cloning and sequencing of the amoA gene showed that nitrifying bacteria included Nitrosomonas europea, N. stercoris, N. cryotolerans, N. eutropha, N. estuarii, eight strains of N. marina, and 15 strains not associated with described species. Nitrifying archaea included eight strains of Nitrosopumilus maritimus, N. koreensis, N. piranensis, N. adriaticus, undescribed congeners, and other undescribed archaea. The species composition of the bacterial and especially the archaeal communities was beyond that yet reported for aquaculture biofilters. While ammonia flux through the respective communities has yet to be estimated, the diverse environmental adaptations of the bacterial and archaeal communities suggest resilience of function under a range of environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA